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The effect of a feedback control on the onset of steady and oscillatory Bénard–Marangoni instability in a
rotating horizontal fluid layer is considered theoretically using linear stability theory. It is demonstrated
that generally the critical Marangoni number for transition from the no-motion (conduction) to the
motion state can be drastically increased by the combined effects of feedback control and rotation. The
role of the controller gain parameter on the Pr � Ta and Pr � R=Rc parameter spaces, dividing stability
domains into which either steady or oscillatory convection is preferred, is determined.
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1. Introduction

Bénard convection, sometimes referred to as Bénard–Marang-
oni convection, was first observed by Henri Bénard [1]. Bénard con-
vection occurs when a horizontal layer of fluid is heated uniformly
from below, which causes the heated fluid to rise because of local
density differences. The warm fluid near the bottom is replaced by
cooler fluid near the top. If the thickness of the fluid is small in
comparison to the expanse of its surface, the fluid will tend to cir-
culate in a series of cells known as Bénard cells. The instability of
Bénard–Marangoni convection is due to the combined effects of
thermal buoyancy and surface tension.

The instability of the convection driven by buoyancy is referred
to as Rayleigh-Bénard instability. It was studied by Chandrasekhar
[2] and Drazin and Reid [3]. Another effect is due to local variation
in surface tension. This type of convective instability is referred to
as Marangoni instability and was first theoretically analysed by
Pearson [4]. The effect of the surface deflection on Marangoni
instability was later considered by Scriven and Sternling [5]. As
these two kinds of instability take place at the same time, the
instability mechanism is known as the Bénard–Marangoni instabil-
ity. Nield [6] first analysed the Bénard–Marangoni instability prob-
lem. Davis and Homsy [7] later studied the effect of surface
deflection on the combined Bénard–Marangoni effect. Stability
analysis of Bénard–Marangoni convection of a low Prandtl number
fluid in an open vertical cylinder was studied by Xu et al. [8].
Medale and Cerisier [9] investigate numerical simulation of
Bénard–Marangoni convection of fluid layer heated from below
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in small aspect ratio container. A numerical study of the relative
importance of Marangoni effects under microgravity conditions is
presented by Giangi et al. [10]. A top free liquid layer is heated
from the bottom in a two-dimensional rectangular container with
insulated side walls was studied by [11].

Pérez-Garcia and Carneiro [12] have carried out a systematic
study of the linear stability of Bénard–Marangoni convection with
a deformable free surface. In their study, convective instability was
induced by the temperature gradient which decreased linearly
with liquid layer height. Sparrow et al. [13] and Roberts [14] ana-
lysed thermal instability in a horizontal fluid layer with the nonlin-
ear temperature distribution which is created by internal heat
generation. Boeck and Thess [15] studied Bénard–Marangoni con-
vection at low Prandtl number with periodic boundary condition
in both horizontal directions and either a free-slip or no-slip bot-
tom wall of the two-dimensional case. Gasser and Kazimi [16]
and Kaviany [17] investigated the effect of the internal heat gener-
ation on the onset of convection in a porous medium. Very re-
cently, Idris et al. [18] studied the effect of a cubic temperature
profile on the onset of steady Bénard–Marangoni convection in a
micropolar fluid.

The ability to control complex convective flow patterns is
important in both technology and fundamental science. In many
technological processes, the naturally occurring flow patterns
may not be the optimal ones. By controlling the flow, one may
be able to optimize the process, improve product quality, and
achieve significant savings. The ability to stabilise otherwise non-
stable states may also assist one in gaining deeper insights into
the dynamics of flows. Delaying the onset of convection by the
use of linear and nonlinear control strategies was described by
Tang and Bau [19,20] and Bau [21]. Bau [21] extended the studies
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Nomenclature

a total horizontal wave number
Bi Biot number
Bo Bond number
Cg Control parameter
Cr Crispation number
d initial thickness of the layer
g gravitational acceleration
k thermal conductivity
M Marangoni number
Pr Prandtl number
R Rayleigh number
s temporal growth rate
Ta Taylor number
hðzÞ vertical variation of temperature perturbation
WðzÞ vertical variation of vertical velocity perturbation
KðzÞ vertical variation of vertical vorticity perturbation
x; y; z spatial Cartesian coordinates

Greek symbols
c coefficient of surface tension
j thermal diffusivity
l dynamic viscosity of fluid
m kinematic viscosity of fluid
q density of fluid
r growth rate
x frequency
X angular velocity
DT temperature difference

Subscript
c critical state

Superscripts
- basic state
0 perturbed state

Fig. 1. Sketch of problem geometry.
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of Pearson [4] and Takashima [22,23] by including a feedback con-
trol strategy effecting small perturbations in boundary data to sup-
press the onset of Marangoni convection. Or et al. [24] employed a
nonlinear feedback control strategy to delay the onset and elimi-
nate the subcritical long-wavelength instability of Marangoni–
Bénard convection. Or and Kelly [25] showed that the weakly nonlin-
ear flow properties in the Rayleigh–Bénard–Marangoni problem can
be altered by linear and nonlinear proportional feedback control
processes and the stabilization of the basic state can be achieved.
Remillieux et al. [26] delineated the mechanism that lead to oscilla-
tory Rayleigh-Bénard convection in the presence of large controller
gains and the application of derivative controller to suppress oscilla-
tory convection. Recently, Hashim and Siri [27] and Siri and Hashim
[28,29] applied Bau’s [21] feedback control strategy to Marangoni
instability in a rotating fluid layer. Bau’s [21] control strategy has
also been applied by Hashim and Awang-Kechil [30] to delay the on-
set of Marangoni convection in variable viscosity fluids.

In this work, we use classical linear stability analysis to obtain
the thresholds and codimension-2 points for the onset of steady
and oscillatory convection in a rotating fluid layer in the presence
of a feedback control strategy. We are concerned with the effect of
the feedback control on the Bénard–Marangoni instability of a hor-
izontal liquid layer with a non-deformable upper free surface.

2. Mathematical formulation

In this study, the stability of a horizontal layer of quiescent fluid
of thickness d which is unbounded in the horizontal x- and y-direc-
tions (see Fig. 1). The layer is kept rotating uniformly around the
vertical z-axis with a constant angular velocity X. The surface ten-
sion c takes the form c ¼ c0 � sðT � T0Þ; where c0 and T0 are refer-
ence values, and s is the rate of change of surface tension with the
temperature. The upper free surface is assumed non-deformable.
In the reference state, the fluid is at rest with respect to the rotat-
ing axes and heat is conducted between the lower boundary ðz ¼ 0Þ
and the interface. Following Koschmieder [31], when motion sets
in, the velocity v ¼ ðu;v ;wÞ, pressure p and temperature T fields
obey the usual balance equations of mass, momentum and energy,

r � v ¼ 0; ð1Þ
@v
@t
þ v � rð Þv þ 2X� v ¼ � 1

q
rpþ mr2v þ g; ð2Þ

@T
@t
þ ðv � rÞT ¼ jr2T; ð3Þ
where q is the fluid density, m is the kinematic viscosity, j is the
thermal diffusivity and g ¼ ð0; 0;�gÞ is the gravitational field. At
the free deformable surface, the boundary conditions comprise of
kinematic, the heat flux, the two shear stress and the normal stress
conditions which are given by, respectively,

w ¼ 0; ð4Þ
krT � nþ hT ¼ 0; ð5Þ

2lDnt ¼
@c
@T
rT � t; ð6Þ

ðpa � pÞ þ 2lDnn ¼ cr � n; ð7Þ

where h is the heat transfer coefficient, k is the thermal conductivity
of the fluid, l is the dynamic viscosity, pa is the pressure of the
atmosphere, Dij is the rate of strain tensor, and t and n denote tan-
gential and normal unit vectors, respectively.

At the lower boundary we have the condition of continuity of
velocity between the solid and the fluid. This lower boundary is as-
sumed to be isothermal. We introduce infinitesimal disturbances
to the governing equations and boundary conditions by setting

ðu;v ;w;q; p; TÞ ¼ ð0;0;0; �q; �p; TÞ þ ðu0;v 0;w0;q0;p0; h0Þ; ð8Þ

where the quantities with bars represent basic states and primed
quantities represent perturbed variables written in normal mode
forms

½w0; h0; f0� ¼ ½WðzÞ;HðzÞ;KðzÞ�eiðaxxþayyÞþ�st; ð9Þ

where ax and ay are wavenumbers of disturbances in the x- and y-
directions, respectively, and f0 is the dimensionless pertubed vortic-
ity in the z-direction. W, H and K are amplitudes of vertical velocity,
temperature and vertical vorticity, respectively. The growth param-
eter ~s is in general complex and denoted by ~s = r+ix, where r is the



Fig. 2. Mc as a function of R for several values of Ta when (a) Cg ¼ 0 and (b) Cg ¼ 2.
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growth rate of the instability and x is the frequency. If r > 0, the
disturbances grow and the system becomes unstable. If r < 0, the
disturbances decay and the system becomes stable. When r ¼ 0,
the instability of the system at the marginal state, sets in as station-
ary motions, provided x ¼ 0, or an oscillatory motions, provided
x–0.

In the proportional feedback control of Bau [21], the actuators
are placed at the bottom heated surface. In addition, sensors are
used to detect the departure of the surface temperature from its
conductive state. Following Bau [21], the determination of a con-
trol, q(t), can be accomplished using the proportional-integral-dif-
ferential (PID) controller of the form

qðtÞ ¼ r þ Cg ½eðtÞ�; eðtÞ ¼ m̂ðtÞ �mðtÞ; ð10Þ

where r is the calibration of the control, eðtÞ an error or deviation
from the state measurement, m̂ðtÞ, from some desired or reference
value, mðtÞ; Cg ¼ CP þ CDd=dt þ CI

R t
0 dt with CP is the proportional

gain, CD differential gain and CI integral gain. Based on (10), for
one sensor plane and proportional feedback control, the actuator
modifies the heated surface temperature using a proportional rela-
tionship between the upper ðz ¼ zuÞ and lower ðz ¼ zlÞ thermal
boundaries for the perturbation field,

Tðx; y; zl; tÞ � Tðx; y; zlÞ ¼ �Cg Tðx; y; zu; tÞ � Tðx; y; zuÞ½ �; ð11Þ

or equivalently,

T 0ðx; y; zl; tÞ ¼ �CgT 0ðx; y; zu; tÞ; ð12Þ

where T 0 denotes the deviation of the fluid’s temperature from its
conductive value.

3. The linearised problem

Following the classical lines of linear stability theory as pre-
sented in [2], the linearised and dimensionless governing equa-
tions can be written as

ðD2 � a2ÞðD2 � a2 � sÞW ¼ Ta�DK þ a2RH; ð13Þ
ðD2 � a2 � sÞK ¼ �Ta�DW ; ð14Þ
ðD2 � a2 � sPrÞH ¼ �W: ð15Þ

The equations have been written in dimensionless form using d=p,
d2
=p2m and mDT=pj as the scales for distance, time and tempera-

ture, respectively, where m is the kinematic viscosity, j is the
thermal diffusivity and DT is the temperature difference between
the top and bottom surfaces. The operator D ¼ d=dz denotes
differentiation with respect to the vertical coordinate z, a ¼ kd=p
is the dimensionless wavenumber and s ¼ ~sd2

=p2m is the stability
parameter.

At the bounding surfaces, the following conditions must be
satisfied:

W ¼ 0; ð16Þ
ðD2 þ a2ÞW þ a2M�H ¼ 0; ð17Þ
DHþ Bi�H ¼ 0; ð18Þ
DK ¼ 0; ð19Þ

on z ¼ p, and

W ¼ DW ¼ K ¼ 0; ð20Þ

on z ¼ 0, together with the controlled condition,

Hð0Þ þ CgHðpÞ ¼ 0: ð21Þ

The starred dimensionless numbers are defined by M� ¼ M=p2;

R� ¼ R=p; Ta� ¼ Ta=p4;Bi� ¼ Bi=p where M; Ta; Bi and Pr are the
standard Marangoni, Rayleigh, Taylor, Biot and Prandtl numbers,
respectively.
4. Solution approach

Since the solution method is standard, we only give a brief
description of the solution approach in this section. Following a
similar procedure as employed in Hashim and Sarma [32], combin-
ing Eqs. (13)–(15), then gives a single linear eight order ordinary
differential equation for H. This eight order ordinary differential
equation together with the boundary conditions (16)–(21) can be
turned into the eigenvalue problem of the form

f ðM;R; Ta; Pr; Bi; Cg ; a; sÞ ¼ 0; ð22Þ

from which the stability domains of the problem can be obtained.
The real and imaginary parts of (22) give a system of two nonlinear
equations for the eigenvalues s and M. The NAG Fortran routine
C05NBF is then used, given values for the other parameters, to find
a zero, x ¼ ImðsðR; Ta; Pr; Bi;Cg ; aÞÞ and M ¼ MðR; Ta; Pr;Bi;Cg ; aÞ
with r ¼ 0, of the system of nonlinear equations.
5. Results and discussion

In this work, we studied the effect of Cg on the onset of steady
and oscillatory Bénard–Marangoni convection in a rotating fluid
layer. Also, in this study we describe the results for the case of a
non-deformable upper surface and an insulated upper surface,
Bi ¼ 0. The most relevant parameters of the current problem are
M, R; Ta; Pr and Cg .

To verify the accuracy of our numerical results, test computa-
tions were performed for steady Bénard–Marangoni convection
in the case of no feedback control ðCg ¼ 0Þ. The Mc obtained in this
case were identical to the results obtained by Namikawa et al. [33]
as plotted in Fig. 2(a). It is observed that Mc decreases as R in-
creases, showing that R is a destabilizing factor. Fig. 2(b) shows
clearly the drastic stabilizing effect of Cg . It is interesting to note



Fig. 4. (a) Mc and (b) ac as functions of R=Rc with Ta ¼ 10; 000 for several values of
Cg .
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that in the case without feedback control we need high rotation
rates to stabilise the layer. However, with feedback control, con-
vection can be delayed at low rotation rates of the layer. As has
been shown by Chandrasekhar [2], the effect of increasing Ta is
to inhibit the onset of steady convection.

Competition is possible between steady and oscillatory modes
at the onset of convection as depicted in Fig. 3(a) and (b) for the
case Cg ¼ 0 and Cg ¼ 2, respectively, with Ta ¼ 10;000 and
R ¼ 1;000. The Mc at which the two modes of convection coexist
are plotted in Fig. 4(a) as a function of R=Rc for several values of
Cg for the case Ta ¼ 10;000. Note that in this study Rc means the
Rayleigh number for the case of no surface tension (i.e. M ¼ 0).
The corresponding ac as a function of R=Rc for several values of
Cg are presented in Fig. 4(b). As R=Rc goes to 1 the Mc decreases
and ac for oscillatory convection is always less than the ac for stea-
dy convection as shown in Fig. 4. Fig. 5(a) shows the Mc at which
the two modes of convection coexist as a function of Ta for several
values of Cg when R ¼ 500. Clearly, both rotation and feedback
control are stabilizing. We observe that ac on the steady curves
are higher than that on the oscillatory curves. As Ta and Cg in-
crease, the ac at the onset of steady convection increases. However,
the situation for oscillatory convection is slightly complicated: that
is, there exists Ta ¼ cTa, below which ac at the onset of oscillatory
convection increases with both Ta and Cg and above which ac in-
creases with Ta, but decreases with Cg .

An important situation that can be observed from Fig. 3 is that
there exists Prc such that for all Pr < Prc , the Mc for oscillatory con-
vection is always less than the Mc for steady convection. The Prc for
the cases depicted in Figs. 3(a) and (b) are Prc � 0:191 and
Prc � 0:211, respectively. The Pr � Ta parameter space dividing sta-
bility domains into which either steady or oscillatory Marangoni
convection is preferred has been presented by Sarma and Hashim
Fig. 3. Marginal stability curves for the onset of steady (solid) and oscillatory
(dashed) convection for the case (a) Cg ¼ 0 and (b) Cg ¼ 2 with Ta ¼ 10; 000 and
R ¼ 1;000 for several values of Pr.

Fig. 5. (a) Mc and (b) ac as functions of Ta for several values of Cg and R ¼ 500.
[34] in the absence of feedback control. Sarma and Hashim’s results
for the specific case Cg ¼ 0 ¼ R are shown in Fig. 6. Each curve in



Fig. 6. (a) Prc and (b) xc as functions of Ta for several values of Cg . Fig. 7. (a) Prc and (b) xc as functions of R=Rc with Ta ¼ 10;000 for several values of
Cg .
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Fig. 6(a) defines the boundary between the steady and oscillatory
domains, i.e. points below the curve represent parameter combina-
tions ðPrc; Ta;CgÞ for which convection sets in as oscillatory mo-
tions, while points above the curve are those for which steady
convection is preferred. Note that the curves for the uncontrolled
and controlled cases crisscross at certain values of Ta, say
Ta ¼ fTa. If Ta < fTa, the application of feedback control reduces
the possibility of oscillatory convection. However, when Ta > fTa
the reverse is true even for small controller gains, which is quite
unexpected. We note that Bau [21] found the possibility of oscilla-
tory convection for relatively large controller gains for the non-
rotating layer. For a fixed Cg , the effect of increasing R is to shrink
the region for oscillatory convection with moderate rotation, but
the reverse is true for high rotation rates. The corresponding criti-
cal frequencies xc are shown in Fig. 6(b).

Now, as a final case with Ta fixed, we can determine the
Pr � R=Rc parameter space dividing stability domains into which
either steady or oscillatory convection is preferred. In Fig. 7(a)
we plot Prc as a function of R=Rc for several values of Cg . Clearly
as shown in Fig. 7(a), Prc is, for the most part, an increasing func-
tion of R=Rc , i.e. as R=Rc increases, the region for oscillatory convec-
tion widens. The corresponding xc for the controlled case are
always above the uncontrolled case as R=Rc is increased (see
Fig. 7(b)).
6. Conclusions

Feedback control strategies to alter the flow patterns in Benard–
Marangoni convection in a fluid layer heated from below and
cooled from above were studied theoretically. It was demonstrated
that the transition from the no-motion state to time-dependent
convection can be significantly postponed. We have demonstrated
that feedback control can be effectively used to stabilize the no-
motion state of a fluid layer heated from below. More specifically,
with the use of controller, one can increase the critical Marangoni
number for the onset of convection. Rather than stabilizing an
equilibrium state of the given system, the controller could be used
to create new flow structures to optimize in such a way to suit par-
ticular process requirements, which was not explored in this study.
In the case of no feedback control with the layer kept rotating, the
critical Marangoni number can also be increased. It is demon-
strated that generally the critical Marangoni number for transition
from the no-motion to the motion state can be drastically in-
creased by the combined effects of feedback control and rotation.
In other words, for the case of no Cg , we need high rotation rate
(Ta) to stabilize the layer, but in the presence of Cg , convection
can be delayed at low rotation rates of the layer. We can conclude
that, the combination of rotation and feedback control has a strong
stabilizing effect. Also, we determined the influence of feedback
control on the R=Rc � Pr parameter space dividing stability do-
mains into which either steady or oscillatory Bénard–Marangoni
convection is preferred. Lastly, the controller described here can
be used to provide active insulation and to suppress convection
currents in material processing and crystal growth processes.
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